Madatanapalli 0

CMPEN 431 Design Space Exploration

Samit Madatanapalli
Spring 2025

Dr. Sampson & Alexander Devic



Madatanapalli 1

Introduction

Different processors are architectured with different design goals, some optimize for
performance, others aim for efficiency, costs, area, or even combinations of these factors.
Achieving these set goals require exploring multidimensional spaces of core microarchitecture,
memory hierarchies, and cache configurations. This paper delivers a heuristic proposal to find
high performing configurations under four different optimizations: Energy savings (EDP),

Energy efficiency per area (EDAP), Performance sensitive (E DZP), and a balance of all(E DZAP).
With a total 18 different dimensions with up to 10 indices per dimension, finding the optimal
configurations would be near impossible. Therefore I designed a search algorithm that uniquely
adapts for each of the different optimizations. The following sections will explore more on the
design space, development of heuristic strategies, results, and a final analysis.

Design Space

To make full use of the limited evaluations, the validation function is crucial for ensuring that
only architecturally valid configurations are considered, allowing the algorithm to prioritize
meaningful design points. To simplify the implementation, I first decoded the encoded index
values into corresponding microarchitectural parameters, to enforce classes of constraints:
cardinality, structural, and realism checks. Cardinality checks ensured each dimension was
within its allowed minimum to maximum range. Structural constraints verified compatibility
with dependent dimensions, for example L2 < L1D + L1I and

L2 block size < 2 x L1 block size. Realism checks filtered out inefficient designs like
mismatched cache latencies, bottleneck scenarios like width > 2 X fetch speed, and other
unrealistic HW constraints.

Now, after filtering out invalid configurations, the next step is to narrow down configurations
toward individual optimizations. Since exhaustively iterating through each possible configuration
is infeasible especially under a 1000 evaluation limit, I narrowed it down by targeting heuristics

that exploit architectural characteristics for each optimization: EDP, EDAP, E DZP, and ED°AP.

EDP, which emphasizes efficiency, naturally led me to exploit simplicity (narrow, in order,
minimal HW). As supported by lectures and energy tables in prompt, narrow in order processors
consume significantly less energy per cycle. For example, the narrowest in order pipeline only
consumes 8p/, whereas the widest out of order processors consume 27p/. Similarly smaller HW,
like cache at 8KB only use 20p/ at 0. 125mW while main memory consumes 201/ at 512mW
per access.



Madatanapalli 2

EDAP, which emphasizes area, led me to exploit low footprint configurations that still look at
energy and delay. I primarily selected an in order narrow pipeline since this significantly reduces
area overhead. Additionally to what was learnt in class, the in order pipelines scale at

width®

5 mmz, while out of order pipelines begin at a 4mm’and scales exponentially.

E DZP, which emphasizes performance, led me to prioritize wide pipelines with fast fetch speeds
and out of order execution. The performance table shows how in order processors take less time
per clock cycle than dynamic with the same fetch width, but as learnt in class, out of order
processors exploit ILP more aggressively and though there is a 5-10 ps increase, the processors

can retire more instructions per cycle since it reduces pipeline stalls and hazards. Since ED P
enforces delay exponentially, improving IPC is more impactful than only saving a few
picoseconds of cycle time.

ED AP, which is a mix of all the previous objectives would require a hybrid approach. Since, all
components dominate, exploring a wide range of configurations that balance performance,
efficiency, and area without sacrificing any single metric.

Iterations of Heuristic

Iteration 1 - Greedy Search:

My first approach was a greedy, sequential approach where I initialized all dimensions to index
0, then incrementally and greedily selected space one dimension at a time. For example, in the
first dimension (width), I tested all indices and locked in the index with better results. This
continued for all dimensions, narrowing down to a “greedy” configuration. However, after
testing, this was extremely exhaustive and I came to realize that I would be leaving many great
configurations out simply due to a greedy early stage decision.

Iteration 2 - Neighbor Search

To fix the problem of bad early stage decisions and to explore more diversely, I switched to a
more fair strategy that gave each dimension a chance. For each of the dimensions, I would
increment its index and enclose it by modulating the valid choices:

configuration[dimV] = (configuration[dimV] + 1) % validChoices

This generates a new “neighbor” of the previous iteration changing a single dimension, so over
many configurations, it improves the diversity of the search with better results. However, I
noticed when running, that there would be invalid configurations which would stall progress,
therefore to fix this, iteration 3 introduced an embedded validator.



Madatanapalli 3

Iteration 3 - Retrieval Configuration

This iteration introduced an embedded validating checker to help reduce stalls. I would invoke
the validateConfiguration() and if it returned 0, I would know that the configuration curated in
iteration 2 failed and I would return a retreated configuration using a completely random
configuration which I know would be less exhaustive on the system. While the
431projectUtils.cpp already rejects invalid configurations before finalizing them, my embedded
validating checker would act earlier in the process by reducing redundant attempts within the
proposal function.

Iteration 4 - Optimization based filtering

To individually exploit each of the four optimizations instead of treating all dimensions equally, I
tuned specific dimensions to take advantage of architectural characteristics that aligned with the
selected optimized goal.

For E DZP, I biased the configuration for high throughput, so large width, high fetch speed, and
out of order execution. This aligned with the optimization with an emphasis on
delay/performance rather than power. For EDP, I emphasized on the configuration to bias toward
the lower half of the index space in each of the dimensions. This heuristic exploited simpler,
more efficient hardware such as narrow in order processors with minimized HW. For EDAP, 1
emphasized on narrow in order processors and hardcoded dimensions like width, fetch speed,
and scheduling. Unlike EDP, which randomly biases toward the lower half of each dimension,

EDAP selectively targets values that minimize physical footprint. For E DZAP, I did not bias a
single metric, instead I allowed all dimensions to be tunable which would allow a wide random
exploration across all performance, area, and energy.



Madatanapalli 4

Results and Analysis

EDP Normalized Geomean EDP normalized per benchmark
3 0.8
0.7
25
06
2
0.5
15 04
1 0.3
0.2
0.5
[]
0 0
R - L L o 1 ) 3 A
H N ANNO MO TONDWN WO ONNSNNDOOD OO OO
X-axis: iterations y-axis: normalized geomean x-axis: benchmarks y-axis: normalized geomean

The early spike in the EDP plot shows the initial phase to explore inefficient configurations, but
as more iterations were evaluated, the heuristic started to converge toward simpler and low
energy efficient values. The best EDP configuration achieved the lowest value on benchmark 1
and the highest on benchmark 4.

ED P

ED2P Normalized Geomean ED2P normalized per benchamark
25 0.8
0.7
06
15 05
04
0.3

05 02

[l
0 0 |

0 - - - - - - - ™~ - p=] fd - — =
SR e YROSE USRS CERERE8RETRISH 0 . ) 3 4
HHA A N NN OOSTTTTDOD DO ONNMND0O DO

x-axis: iterations y-axis: normalized geomean x-axis: benchmarks y-axis: normalized geomean

The early spike in the ED P plot shows the initial phase to explore inefficient configuration, but
as more iterations were evaluated, the heuristic started to converge toward high throughput

designs. The best E p’p configuration prioritized a wider out of order processor achieving the
lowest value on benchmark 1 and the highest on benchmark 0.



Madatanapalli 5

EDAP Normalized Geomean EDAP normalized per benchmark
2 4.50E09
18 — 4.00E-09
e 3.50E09
14
3.00E-09
12
2.50E-09
1
2.00E-09
08
06 150E-09
04 1.00E-09
02 5.00E-10 .
0 0.00E+00
C PR Ne88NT A8 0bE 828058 3R89 2RENE88NTB8TBES 0 1 2 3 4
SREERRE R B REE R B R SRS S -8 B R
X-axis: iterations y-axis: normalized geomean x-axis: benchmarks y-axis: normalized geomean

EDAP normalized geomean had a spiky start but as more iterations were evaluated, the heuristic

started to converge toward a minimized EDAP around 1. 07 X 10°° Js mm”. The best EDAP
configuration used a narrow in order processor and low indexed dimensions to minimize a
physical footprint without a huge loss in performance. This configuration achieved the lowest
value on benchmark 1 and the highest on benchmark 4.

ED°AP
ED2AP Normalized Geomean ED2AP normalized per benchmark
25 3.50E-09
3.00E-09
2
2.50E-09
15
2.00E-09
1 1.50E-09
1.00E-09
05
5.00E-10
0 0.00E+00
N EYRHNCE S SN S IR B8 8T RNeR o s B 3 R
HAE A NN N0 TONDWNOONNMNGDOOO OO
X-axis: iterations y-axis: normalized geomean x-axis: benchmarks y-axis: normalized geomean

Similar to the other optimizations ED AP, the normalized geomean had a spiky start but as more
iterations were evaluated, the heuristic started to converge toward a minimized ED AP around

1.87 x 10°° Ji s” mm’. The best ED°AP configuration which factors in energy, performance,
and area resulted in a narrow in order processor with scattered HW configurations. It achieved
the lowest value on benchmark 1 and the highest on benchmark 3.

All of the optimizations were normalized to the baseline (0, 0, 0, 0,0, 0, 5,0, 5,0, 2, 2, 2, 3, 0, 0,
3,0).



Madatanapalli 6

EDP ED’P EDAP ED*AP Baseline

0: Width 2 4 1 1 1
1: Fetch speed 2 2 2 2 1
2: Scheduling out of order out of order in order in order in order
3: RUU Size 128 64 16 8 4
4: LSQ Size 32 16 8 8 4
5: Memports 1 2 2 1 1
6: L1D sets 512 512 512 512 1024
7: L1D ways 1 1 2 2 1
8: L1I sets 1024 128 512 512 1024
9: L1I ways 2 4 4 2 1
10: Unified L2 2048 256 512 512 1024
sets
11: Unified L2 128 64 128 64 64
block size
12: Unified L2 2 8 2 4 4
ways
13: TLB sets 16 8 16 64 32
14: L1D latency |1 2 2 2 1
15: L1 latency |4 4 4 2 1
16: Unified L2 8 8 6 7 8
latency
17: Branch perfect Bimodal 2 level GAp 2 Level GAp perfect
predictor

Conclusion

In this project, I explored a large space of processor configurations and designed heuristics for

different optimization goals: EDP, EDAP, E DZP, and ED’AP. By exploiting architectural
characteristics and tailoring the algorithm, I was able to find the “best” configuration across
different optimizations. This project helped me better understand how microarchitectural choices

affect performance, energy, and area in the real world systems.




