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Introduction 

Different processors are architectured with different design goals, some optimize for 
performance, others aim for efficiency, costs, area, or even combinations of these factors. 
Achieving these set goals require exploring multidimensional spaces of core microarchitecture, 
memory hierarchies, and cache configurations. This paper delivers a heuristic proposal to find 
high performing configurations under four different optimizations: Energy savings ( ), 𝐸𝐷𝑃
Energy efficiency per area ( ), Performance sensitive ( ), and a balance of all( ). 𝐸𝐷𝐴𝑃 𝐸𝐷2𝑃 𝐸𝐷2𝐴𝑃
With a total 18 different dimensions with up to 10 indices per dimension, finding the optimal 
configurations would be near impossible. Therefore I designed a search algorithm that uniquely 
adapts for each of the different optimizations. The following sections will explore more on the 
design space, development of heuristic strategies, results, and a final analysis.  

 

Design Space 
To make full use of the limited evaluations, the validation function is crucial for ensuring that 
only architecturally valid configurations are considered, allowing the algorithm to prioritize 
meaningful design points. To simplify the implementation, I first decoded the encoded index 
values into corresponding microarchitectural parameters, to enforce classes of constraints: 
cardinality, structural, and realism checks. Cardinality checks ensured each dimension was 
within its allowed minimum to maximum range. Structural constraints verified compatibility 
with dependent dimensions, for example  and  𝐿2 < 𝐿1𝐷 + 𝐿1𝐼

. Realism checks filtered out inefficient designs like 𝐿2 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 <  2 × 𝐿1 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒
mismatched cache latencies, bottleneck scenarios like , and other 𝑤𝑖𝑑𝑡ℎ > 2 × 𝑓𝑒𝑡𝑐ℎ 𝑠𝑝𝑒𝑒𝑑
unrealistic HW constraints.  

Now, after filtering out invalid configurations, the next step is to narrow down configurations 
toward individual optimizations. Since exhaustively iterating through each possible configuration 
is infeasible especially under a 1000 evaluation limit, I narrowed it down by targeting heuristics 
that exploit architectural characteristics for each optimization: , , , and . 𝐸𝐷𝑃 𝐸𝐷𝐴𝑃 𝐸𝐷2𝑃 𝐸𝐷2𝐴𝑃

 

, which emphasizes efficiency, naturally led me to exploit simplicity (narrow, in order, 𝐸𝐷𝑃
minimal HW). As supported by lectures and energy tables in prompt, narrow in order processors 
consume significantly less energy per cycle. For example, the narrowest in order pipeline only 
consumes , whereas the widest out of order processors consume . Similarly smaller HW, 8𝑝𝐽 27𝑝𝐽
like cache at  only use  at  while main memory consumes  at  8𝐾𝐵 20𝑝𝐽 0. 125𝑚𝑊 20𝑛𝐽 512𝑚𝑊
per access.  
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, which emphasizes area, led me to exploit low footprint configurations that still look at 𝐸𝐷𝐴𝑃
energy and delay. I primarily selected an in order narrow pipeline since this significantly reduces 
area overhead. Additionally to what was learnt in class, the in order pipelines scale at 

, while out of order pipelines begin at a and scales exponentially.  𝑤𝑖𝑑𝑡ℎ2

2 𝑚𝑚2 4𝑚𝑚2

, which emphasizes performance, led me to prioritize wide pipelines with fast fetch speeds 𝐸𝐷2𝑃
and out of order execution. The performance table shows how in order processors take less time 
per clock cycle than dynamic with the same fetch width, but as learnt in class, out of order 
processors exploit ILP more aggressively and though there is a 5-10 ps increase, the processors 
can retire more instructions per cycle since it reduces pipeline stalls and hazards. Since  𝐸𝐷2𝑃
enforces delay exponentially, improving IPC is more impactful than only saving a few 
picoseconds of cycle time.  

, which is a mix of all the previous objectives would require a hybrid approach. Since, all 𝐸𝐷2𝐴𝑃
components dominate, exploring a wide range of configurations that balance performance, 
efficiency, and area without sacrificing any single metric. 

 

Iterations of Heuristic 
Iteration 1 - Greedy Search: 

My first approach was a greedy, sequential approach where I initialized all dimensions to index 
0, then incrementally and greedily selected space one dimension at a time. For example, in the 
first dimension (width), I tested all indices and locked in the index with better results. This 
continued for all dimensions, narrowing down to a “greedy” configuration. However, after 
testing, this was extremely exhaustive and I came to realize that I would be leaving many great 
configurations out simply due to a greedy early stage decision.  

Iteration 2 - Neighbor Search 

To fix the problem of bad early stage decisions and to explore more diversely, I switched to a 
more fair strategy that gave each dimension a chance. For each of the dimensions, I would 
increment its index and enclose it by modulating the valid choices:

 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛[𝑑𝑖𝑚𝑉] =  (𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛[𝑑𝑖𝑚𝑉] +  1) % 𝑣𝑎𝑙𝑖𝑑𝐶ℎ𝑜𝑖𝑐𝑒𝑠

This generates a new “neighbor” of the previous iteration changing a single dimension, so over 
many configurations, it improves the diversity of the search with better results. However, I 
noticed when running, that there would be invalid configurations which would stall progress, 
therefore to fix this, iteration 3 introduced an embedded validator.  
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Iteration 3 - Retrieval Configuration 

This iteration introduced an embedded validating checker to help reduce stalls. I would invoke 
the validateConfiguration() and if it returned 0, I would know that the configuration curated in 
iteration 2 failed and I would return a retreated configuration using a completely random 
configuration which I know would be less exhaustive on the system. While the 
431projectUtils.cpp already rejects invalid configurations before finalizing them, my embedded 
validating checker would act earlier in the process by reducing redundant attempts within the 
proposal function.  

Iteration 4 - Optimization based filtering 

To individually exploit each of the four optimizations instead of treating all dimensions equally, I 
tuned specific dimensions to take advantage of architectural characteristics that aligned with the 
selected optimized goal.  

For , I biased the configuration for high throughput, so large width, high fetch speed, and 𝐸𝐷2𝑃
out of order execution. This aligned with the optimization with an emphasis on 
delay/performance rather than power. For , I emphasized on the configuration to bias toward 𝐸𝐷𝑃
the lower half of the index space in each of the dimensions. This heuristic exploited simpler, 
more efficient hardware such as narrow in order processors with minimized HW. For , I 𝐸𝐷𝐴𝑃
emphasized on narrow in order processors and hardcoded dimensions like width, fetch speed, 
and scheduling. Unlike , which randomly biases toward the lower half of each dimension, 𝐸𝐷𝑃

 selectively targets values that minimize physical footprint. For , I did not bias a 𝐸𝐷𝐴𝑃 𝐸𝐷2𝐴𝑃
single metric, instead I allowed all dimensions to be tunable which would allow a wide random 
exploration across all performance, area, and energy.  
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Results and Analysis 

 𝐸𝐷𝑃

 
x-axis: iterations  y-axis: normalized geomean​ ​ x-axis: benchmarks  y-axis: normalized geomean 

The early spike in the  plot shows the initial phase to explore inefficient configurations, but 𝐸𝐷𝑃
as more iterations were evaluated, the heuristic started to converge toward simpler and low 
energy efficient values. The best EDP configuration achieved the lowest value on benchmark 1 
and the highest on benchmark 4.  

 

 𝐸𝐷2𝑃

 
x-axis: iterations  y-axis: normalized geomean​ ​ x-axis: benchmarks  y-axis: normalized geomean 

The early spike in the  plot shows the initial phase to explore inefficient configuration, but 𝐸𝐷2𝑃
as more iterations were evaluated, the heuristic started to converge toward high throughput 
designs. The best  configuration prioritized a wider out of order processor achieving the 𝐸𝐷2𝑃
lowest value on benchmark 1 and the highest on benchmark 0.  
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 𝐸𝐷𝐴𝑃

 
x-axis: iterations  y-axis: normalized geomean​ ​ x-axis: benchmarks  y-axis: normalized geomean 

 normalized geomean had a spiky start but as more iterations were evaluated, the heuristic 𝐸𝐷𝐴𝑃
started to converge toward a minimized  around . The best  𝐸𝐷𝐴𝑃 1. 07 × 10−8 𝐽𝑠 𝑚𝑚2 𝐸𝐷𝐴𝑃
configuration used a narrow in order processor and low indexed dimensions to minimize a 
physical footprint without a huge loss in performance. This configuration achieved the lowest 
value on benchmark 1 and the highest on benchmark 4.  

 

 𝐸𝐷2𝐴𝑃

 
x-axis: iterations  y-axis: normalized geomean​ ​ x-axis: benchmarks  y-axis: normalized geomean 

Similar to the other optimizations , the normalized geomean had a spiky start but as more 𝐸𝐷2𝐴𝑃
iterations were evaluated, the heuristic started to converge toward a minimized  around 𝐸𝐷2𝐴𝑃

. The best  configuration which factors in energy, performance, 1. 87 × 10−8 𝐽𝑠2 𝑚𝑚2 𝐸𝐷2𝐴𝑃
and area resulted in a narrow in order processor with scattered HW configurations. It achieved 
the lowest value on benchmark 1 and the highest on benchmark 3.  

All of the optimizations were normalized to the baseline (0, 0, 0, 0, 0, 0, 5, 0, 5, 0, 2, 2, 2, 3, 0, 0, 
3, 0). 
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  𝐸𝐷𝑃  𝐸𝐷2𝑃  𝐸𝐷𝐴𝑃  𝐸𝐷2𝐴𝑃 Baseline 

0: Width 2 4 1 1 1 

1: Fetch speed 2 2 2 2 1 

2: Scheduling out of order out of order in order in order in order 

3: RUU Size 128 64 16 8 4 

4: LSQ Size 32 16 8 8 4 

5: Memports 1 2 2 1 1 

6: L1D sets 512 512 512 512 1024 

7: L1D ways 1 1 2 2 1 

8: L1I sets 1024 128 512 512 1024 

9: L1I ways 2 4 4 2 1 

10: Unified L2 
sets 

2048 256 512 512 1024 

11: Unified L2 
block size 

128 64 128 64 64 

12: Unified L2 
ways 

2 8 2 4 4 

13: TLB sets 16 8 16 64 32 

14: L1D latency 1 2 2 2 1 

15: L1I latency 4 4 4 2 1 

16: Unified L2 
latency 

8 8 6 7 8 

17: Branch 
predictor 

perfect Bimodal 2 level GAp 2 Level GAp perfect 

 

Conclusion 
In this project, I explored a large space of processor configurations and designed heuristics for 
different optimization goals:  , , , and . By exploiting architectural 𝐸𝐷𝑃 𝐸𝐷𝐴𝑃 𝐸𝐷2𝑃 𝐸𝐷2𝐴𝑃
characteristics and tailoring the algorithm, I was able to find the “best” configuration across 
different optimizations. This project helped me better understand how microarchitectural choices 
affect performance, energy, and area in the real world systems. 


